90

6. Is it possible measure simultaneously square of angular momen-
tum and its x projection?

10

Total angular-momentum operator

LP=L2+L+ L2
Two observables A and B can be measured simultaneously with definite values if and only if
[A,B] =0.
[L?, L,] =0
Starting from L% = L2 + Lz + L2, we have

[L?, Lo] = [L2, L] + [L}, La] + [L2, La].

[L2,L,) = Ly[Ly, Ly + [Lay L)Ly =0+ 0 = 0.
Using the identity [A?, B] = A[A, B] + [A, B]A:

[Lz, Lz] = Ly[Lyv Lx] + [Lya Lz] Ly.
From [L,, L,] = iheyzpLi, = —ih L., it follows that
[LY,Ly] = —ih(LyL. + L.Ly).

Similarly,
[L2,L.] = L.[L., Ly] + (L., Ls] L,

and since [L, L] = ihe g, Ly, = ih Ly, we get
[L2,L,] = +ih(L,L, + L,L.).
Adding these contributions,
[L?,L,]=0 — ih(L,L, + L,L,) + ih(L.L, + L,L,) =0.

Since [L?,L,] = 0, the operators L? and L, commute and therefore can be measured simultaneously. A
common set of eigenstates {|l, m,)} satisfies

L? [I,my) = K2 W4+1) [l,mg), Lg|lymg)=hmy [l,myg),

wherel:(),%,l,%,...andmac:fl,flJrl,...,Jrl.

poole taisarvu vaartused?

19. How to calculate in quantum mechanics the kinetic energy of
a rotating body with the moment of inertia I 7

Kinetic Energy of a Quantum Rigid Rotor

In quantum mechanics, a rigid rotor of moment of inertia I has kinetic-energy operator

12
T = —
2I’

where

o [2 =12+ L2+ L? s the total angular-momentum operator,
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e [ is the moment of inertia about the rotation axis.
The eigenvalues of L2 are
L2|lm) =R210+1) [I,m), 1=0,1,2,..., m=—1,—1+1,... +L
Hence the energy levels of the rigid rotor are

R+ 1)

E, oI

For a point mass m constrained to move on a circle of radius r, the moment of inertia about the center is

I = mr2

Substituting I = mr? into the expression for E; gives

20

P21+ 1
g =D

2mr?

The ground state (I = 0) has Ey = 0. The first excited state (I = 1) has

2, 1-2 2
p o2
2mr2 mr?2
Classically,
1
T = —mev>
2

Equate this to Fi:

1 5 h? | 212 h
- — — =4 —— =2 .
g Me? Me 12 v m2r? \[mer

Substituting numerical values:
h=1.054%10"%*Js, m.=9109 x 103 kg, r=1.0x10"""m,

we find L
v ~ V3 1.054 x 10

~ 1.6 x 10°m/s.
(9.109 x 10-31) (1.0 x 10-10) 6% 10%m/s

23. Write the radial part of wave function Rnl for quantum num-
bers n=3 and 1=2

In a hydrogen-like atom the radial part of the bound-state wavefunction can be written in the form
2r

Rnl(r) = an péeip/Q Lizjgl_l(p)v pP= nroa 20

n=3 (=2

Here
n—0-1=3-2-1=0 = Li(p) =1

Hence the unnormalized radial part is
2 —p/2 2r 2 T
Rya(r) o pme™7% = (%) exp(—%)'

therefore set

R3a(r)=C (%)2 exp(*ﬁ)
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with C to be determined.
The full three-dimensional normalization requires

o0
/ R3,(r)r*dr = 1.
0

Substituting » = rox, so dr = rodx and r2dr = rg 22 dz. Then

/OO’CQU%””/B
0

The remaining integral is evaluated via the Gamma function:

> 7 41
/ 28 e72%/3 4z = 6! (é) = M
0 2

2

rovtdr =1 = |C’|2r8’/ 28 e 2/3 dy = 1.
0

8
Hence 16 98415 1
CPri=—7—=1 = |[CP= :
O 70 51 3 1 = 515003
Taking the positive square root,
C= 2v2
C81V15r3

Rsa(r) = &Qf\{;g (%>2exp(_ﬁ).

39.What does the eigenvalue problem look like for the operator of
square of the orbital magnetic moment of an electron in a hydrogen
atom?

In a hydrogen-like atom the orbital magnetic moment operator of the electron is defined by

=—- -1
Ky om ’

where

e ¢ > ( is the elementary charge,

e m is the electron mass,

20

o L=(L,, ﬁy, L.) is the orbital angular-momentum operator.

We are interested in the square of this operator,

where

The eigenvalue problem for ﬂ% is
Substituting 2 = (u%/h?) L? gives

1 . h2
EB 20 =)0\U = [20=""")\VU.
72 2

B
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We know that L? and L. admit a common basis of eigenfunctions, the spherical harmonics Yy, (6, ¢),
which satisfy R A
L2}/€m :h2€(£+1))/€’m7 Lz }/Zm = hmYlma

with quantum numbers
£=0,1,2,..., m=—0—0+1,...,+L

The stationary eigenstates of the hydrogen atom separate in spherical coordinates as
Yoom (7", 03 d)) = Rnl(r) Yom (97 d))a

where R,¢(r) is the well-known radial function (solution of the radial Schrédinger equation). Because fi2
acts only on the angular variables, we have

2 2
. KB 7 X
17 W = h—’j L? [Rye(r) Yem (0, 9)] = hff; (R2(0 4 1)) Rue(r) Yom (0, 6).
Comparing with the eigenvalue equation ﬂ%\ll = AU gives

A= pdle+1), £=0,1,2,...

Each eigenvalue A\, = p%0(¢€ + 1) is (2¢ + 1)-fold degenerate in the magnetic quantum number m.

42.Can you prove the following expression (page 127): “In the first
order approximation of coefficient...

20

We consider a Hamiltonian of the form

HO)) = HO 4+ \H,
and seek its eigenvalues and eigenfunctions expanded in powers of the small parameter A:

E.(N) = EY + AEJD + O(\%),
T, (\) =00 + Ao £ 00)?).

The unperturbed states {\117(7?)} form a complete orthonormal set: <\Il,(£)|\I!§€O)> = Omk-
Inserting these expansions into H(\) ¥,,(A) = E,()\) ¥,,()) and collecting terms of order A\ and \! gives:

e Zeroth order (\°): )
HO g0 = 5O 4.

o First order (\!): R R
(H(O) . E7(LO)) \Ilng) + H/ \IlgLO) — Eﬁll) \Ijgl(])

We expand the first-order correction in the unperturbed basis:

WO =S, o = (w0 9,

Projecting the first-order equation onto <\Il,(co)|. For k = n one finds

B = (w9

H/

v,

the familiar diagonal energy shift. For k # n,

o (BO ~ BO) = (w0

v,

S
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hence .
(w179

EY - B

At all orders the perturbed state must remain normalized:

(V) | W () = 1.

ah

Expanding to first order in A:
1= (U + A0 | T+ A1) + 02
= 1+ A[(ED[90) + (1P 0D)] + 0(?),

Since the A" term already equals 1, the coefficient of A\ must vanish:
(WD) + (@O = o.

But by definition <‘I/$10)|\11511)> =Y and its complex conjugate is (@5,”\\115{))) = (a,(ll))*,




