
6. Is it possible measure simultaneously square of angular momen-
tum and its x projection?

Total angular-momentum operator
L2 = L2

x + L2
y + L2

z.

Two observables A and B can be measured simultaneously with definite values if and only if

[A,B] = 0.

[L2, Lx] = 0

Starting from L2 = L2
x + L2

y + L2
z, we have

[L2, Lx] = [L2
x, Lx] + [L2

y, Lx] + [L2
z, Lx].

[L2
x, Lx] = Lx[Lx, Lx] + [Lx, Lx]Lx = 0 + 0 = 0.

Using the identity [A2, B] = A[A,B] + [A,B]A:

[L2
y, Lx] = Ly[Ly, Lx] + [Ly, Lx]Ly.

From [Ly, Lx] = iℏ εyxkLk = − iℏLz, it follows that

[L2
y, Lx] = − iℏ (LyLz + LzLy).

Similarly,
[L2

z, Lx] = Lz[Lz, Lx] + [Lz, Lx]Lz,

and since [Lz, Lx] = iℏ εzxkLk = iℏLy, we get

[L2
z, Lx] = + iℏ (LzLy + LyLz).

Adding these contributions,

[L2, Lx] = 0 − iℏ (LyLz + LzLy) + iℏ (LzLy + LyLz) = 0.

Since [L2, Lx] = 0, the operators L2 and Lx commute and therefore can be measured simultaneously. A
common set of eigenstates {|l,mx⟩} satisfies

L2 |l,mx⟩ = ℏ2 l(l + 1) |l,mx⟩ , Lx |l,mx⟩ = ℏmx |l,mx⟩ ,

where l = 0, 1
2 , 1,

3
2 , . . . and mx = −l,−l + 1, . . . ,+l.

19. How to calculate in quantum mechanics the kinetic energy of
a rotating body with the moment of inertia I ?

Kinetic Energy of a Quantum Rigid Rotor

In quantum mechanics, a rigid rotor of moment of inertia I has kinetic-energy operator

T̂ =
L̂2

2I
,

where

• L̂2 = L̂2
x + L̂2

y + L̂2
z is the total angular-momentum operator,
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• I is the moment of inertia about the rotation axis.

The eigenvalues of L̂2 are

L̂2 |l,m⟩ = ℏ2 l(l + 1) |l,m⟩ , l = 0, 1, 2, . . . , m = −l,−l + 1, . . . ,+l.

Hence the energy levels of the rigid rotor are

El =
ℏ2 l(l + 1)

2I
.

For a point mass m constrained to move on a circle of radius r, the moment of inertia about the center is

I = mr2.

Substituting I = mr2 into the expression for El gives

El =
ℏ2 l(l + 1)

2mr2
.

The ground state (l = 0) has E0 = 0. The first excited state (l = 1) has

E1 =
ℏ2 · 1 · 2
2mr2

=
ℏ2

mr2
.

Classically,

T =
1

2
me v

2.

Equate this to E1:

1

2
me v

2 =
ℏ2

me r2
=⇒ v =

√
2 ℏ2
m2

e r
2
=

√
2

ℏ
me r

.

Substituting numerical values:

ℏ = 1.054× 10−34 J s, me = 9.109× 10−31 kg, r = 1.0× 10−10 m,

we find

v ≈
√
2

1.054× 10−34

(9.109× 10−31) (1.0× 10−10)
≈ 1.6× 106 m/s.

23. Write the radial part of wave function Rnl for quantum num-
bers n=3 and l=2

In a hydrogen-like atom the radial part of the bound-state wavefunction can be written in the form

Rnℓ(r) = Nnℓ ρ
ℓ e−ρ/2 L 2ℓ+1

n−ℓ−1(ρ), ρ =
2r

n r0
,

n = 3, ℓ = 2

Here
n− ℓ− 1 = 3− 2− 1 = 0 =⇒ L5

0(ρ) = 1.

Hence the unnormalized radial part is

R3,2(r) ∝ ρ2 e−ρ/2 =
(

2r
3r0

)2

exp
(
− r

3r0

)
.

therefore set

R3,2(r) = C
(

r
r0

)2

exp
(
− r

3r0

)
,
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with C to be determined.
The full three-dimensional normalization requires∫ ∞

0

R2
3,2(r) r

2 dr = 1.

Substituting r = r0x, so dr = r0 dx and r2 dr = r30 x
2 dx. Then∫ ∞

0

∣∣∣∣C x2e−x/3

∣∣∣∣2 r30x
2 dx = 1 =⇒ |C|2 r30

∫ ∞

0

x6 e−2x/3 dx = 1.

The remaining integral is evaluated via the Gamma function:∫ ∞

0

x6 e−2x/3 dx = 6!
(3
2

)7

=
98415

8
.

Hence

|C|2 r30
16

81

98415

8
= 1 =⇒ |C|2 =

1

2430 r30
.

Taking the positive square root,

C =
2
√
2

81
√
15 r30

.

R3,2(r) =
2
√
2

81
√
15 r30

(
r
r0

)2

exp
(
− r

3 r0

)
.

39.What does the eigenvalue problem look like for the operator of
square of the orbital magnetic moment of an electron in a hydrogen
atom?

In a hydrogen-like atom the orbital magnetic moment operator of the electron is defined by

µ̂ℓ = − e

2m
L̂,

where

• e > 0 is the elementary charge,

• m is the electron mass,

• L̂ = (L̂x, L̂y, L̂z) is the orbital angular-momentum operator.

We are interested in the square of this operator,

µ̂2
ℓ = µ̂ℓ ·µ̂ℓ =

(
− e

2m

)2

L̂2 =
e2

4m2
L̂2 =

µ2
B

ℏ2
L̂2,

where

µB =
eℏ
2m

(Bohr magneton).

The eigenvalue problem for µ̂2
ℓ is

µ̂2
ℓ Ψ(r) = λΨ(r).

Substituting µ̂2
ℓ = (µ2

B/ℏ2) L̂2 gives

µ2
B

ℏ2
L̂2 Ψ = λΨ =⇒ L̂2 Ψ =

ℏ2

µ2
B

λΨ.
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We know that L̂2 and L̂z admit a common basis of eigenfunctions, the spherical harmonics Yℓm(θ, ϕ),
which satisfy

L̂2 Yℓm = ℏ2 ℓ(ℓ+ 1)Yℓm, L̂z Yℓm = ℏmYℓm,

with quantum numbers
ℓ = 0, 1, 2, . . . , m = −ℓ,−ℓ+ 1, . . . ,+ℓ.

The stationary eigenstates of the hydrogen atom separate in spherical coordinates as

Ψnℓm(r, θ, ϕ) = Rnℓ(r) Yℓm(θ, ϕ),

where Rnℓ(r) is the well-known radial function (solution of the radial Schrödinger equation). Because µ̂2
ℓ

acts only on the angular variables, we have

µ̂2
ℓ Ψnℓm =

µ2
B

ℏ2
L̂2

[
Rnℓ(r)Yℓm(θ, ϕ)

]
=

µ2
B

ℏ2
(
ℏ2 ℓ(ℓ+ 1)

)
Rnℓ(r)Yℓm(θ, ϕ).

Comparing with the eigenvalue equation µ̂2
ℓΨ = λΨ gives

λ = µ2
B ℓ(ℓ+ 1), ℓ = 0, 1, 2, . . .

Each eigenvalue λℓ = µ2
Bℓ(ℓ+ 1) is (2ℓ+ 1)-fold degenerate in the magnetic quantum number m.

42.Can you prove the following expression (page 127): “In the first
order approximation of coefficient...

We consider a Hamiltonian of the form

Ĥ(λ) = Ĥ(0) + λ Ĥ ′,

and seek its eigenvalues and eigenfunctions expanded in powers of the small parameter λ:

En(λ) = E(0)
n + λE(1)

n + O(λ2),

Ψn(λ) = Ψ(0)
n + λΨ(1)

n + O(λ2).

The unperturbed states {Ψ(0)
m } form a complete orthonormal set: ⟨Ψ(0)

m |Ψ(0)
k ⟩ = δmk.

Inserting these expansions into Ĥ(λ)Ψn(λ) = En(λ)Ψn(λ) and collecting terms of order λ0 and λ1 gives:

• Zeroth order (λ0):
Ĥ(0) Ψ(0)

n = E(0)
n Ψ(0)

n .

• First order (λ1): (
Ĥ(0) − E(0)

n

)
Ψ(1)

n + Ĥ ′ Ψ(0)
n = E(1)

n Ψ(0)
n .

We expand the first-order correction in the unperturbed basis:

Ψ(1)
n =

∑
m

a(1)m Ψ(0)
m , a(1)m =

〈
Ψ(0)

m

∣∣ Ψ(1)
n

〉
.

Projecting the first-order equation onto ⟨Ψ(0)
k |. For k = n one finds

E(1)
n =

〈
Ψ(0)

n

∣∣Ĥ ′∣∣Ψ(0)
n

〉
,

the familiar diagonal energy shift. For k ̸= n,

a
(1)
k (E

(0)
k − E(0)

n ) =
〈
Ψ

(0)
k

∣∣Ĥ ′∣∣Ψ(0)
n

〉
,
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hence

a
(1)
k =

⟨Ψ(0)
k |Ĥ ′|Ψ(0)

n ⟩
E

(0)
n − E

(0)
k

.

At all orders the perturbed state must remain normalized:

⟨Ψn(λ) | Ψn(λ)⟩ = 1.

Expanding to first order in λ:

1 =
〈
Ψ(0)

n + λΨ(1)
n

∣∣ Ψ(0)
n + λΨ(1)

n

〉
+O(λ2)

= 1 + λ
[
⟨Ψ(1)

n |Ψ(0)
n ⟩+ ⟨Ψ(0)

n |Ψ(1)
n ⟩

]
+O(λ2).

Since the λ0 term already equals 1, the coefficient of λ must vanish:

⟨Ψ(1)
n |Ψ(0)

n ⟩ + ⟨Ψ(0)
n |Ψ(1)

n ⟩ = 0.

But by definition ⟨Ψ(0)
n |Ψ(1)

n ⟩ = a
(1)
n and its complex conjugate is ⟨Ψ(1)

n |Ψ(0)
n ⟩ =

(
a
(1)
n

)∗
.

a(1)n +
(
a(1)n

)∗
= 0,
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