
11. Find a solution to the eigenvalue problem for the operator L̂2

(Derive!)

We write it as
L̂2 Yβ(θ, ϕ) = ℏ2 β Yβ(θ, ϕ) ,

where the eigenvalue we try to find is denoted β. Since Yβ(θ, ϕ) is at the same

time an eigenfunction of L̂z (which we have already found), we represent

Yβ(θ, ϕ) =
1√
2π

Pm
β (θ) eimϕ .

If we use the direct expression of L̂2, namely

L̂2 = −ℏ2
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
,

we get

−ℏ2
[

1
sin θ

∂θ(sin θ ∂θ) +
1

sin2 θ
∂2ϕ

]
Yβ = ℏ2 β Yβ.

After substituting Yβ = (1/
√
2π)Pm

β (θ)eimϕ and dividing out the eimϕ, one
obtains for Pm

β (θ):[
1

sin θ

d

dθ

(
sin θ d

dθ

)
− m2

sin2 θ

]
Pm
β (θ) = −β Pm

β (θ).

This is the associated Legendre equation. Regular (single-valued, finite) so-
lutions on 0 ≤ θ ≤ π exist only if

β = l(l + 1), l = 0, 1, 2, . . . , |m| ≤ l,

in which case
Pm
β (θ) → Pm

l (cos θ),

and the full eigenfunctions are the spherical harmonics

Y m
l (θ, ϕ) = Nm

l Pm
l (cos θ)

eimϕ

√
2π
.
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16. How, in quantum mechanics, can one calculate the angle θ
between the angular momentum vector L and the z–axis? Calculate
θ for the 3d orbitals (l = 2) with magnetic quantum numbers m = −2
and m = +1.

In a simultaneous eigenstate |l,m⟩ we have

⟨L2⟩ = ℏ2 l(l + 1), ⟨Lz⟩ = mℏ.

If we picture L as a vector of length
√

⟨L2⟩ = ℏ
√
l(l + 1) and z–component

⟨Lz⟩ = mℏ, then the angle θ it makes with the z–axis satisfies

cos θ =
⟨Lz⟩√
⟨L2⟩

=
mℏ

ℏ
√
l(l + 1)

=
m√
l(l + 1)

.

Hence

θ = arccos

(
m√
l(l + 1)

)
.

For the 3d orbitals, l = 2 so
√
l(l + 1) =

√
6. Thus

θm=−2 = arccos

(
−2√
6

)
≈ 145.8◦, θm=+1 = arccos

(
1√
6

)
≈ 65.9◦.

22. What does the equation for the radial wave function look like
if we assume that the electron is an uncharged particle and moves
around the nucleus in an orbit with a fixed radius (r=const)?

Starting from the general time-independent Schrödinger equation in a central
potential U(r),

− ℏ2

2M
∆ψ(r) + U(r)ψ(r) = E ψ(r),

and using the spherical-coordinate form of the Laplacian,

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
− L̂2

ℏ2r2
,

we write ψ(r, θ, ϕ) = R(r)Y m
l (θ, ϕ). Since L̂2Y m

l = ℏ2l(l + 1)Y m
l , the radial

equation (cf. §10.2–10.3) becomes

− ℏ2

2M

[
1

r2
d

dr

(
r2
dR

dr

)
− l(l + 1)

r2
R

]
+ U(r)R = E R.
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If the electron is “uncharged,” we set U(r) = 0. Thus

− ℏ2

2M

[
R′′(r) +

2

r
R′(r)− l(l + 1)

r2
R(r)

]
= E R(r).

Finally, if the radius is fixed at r = R0 = const, there is no radial dependence:
R′(R0) = R′′(R0) = 0. The only surviving term is the centrifugal one,
yielding

ℏ2 l(l + 1)

2M R2
0

R(R0) = E R(R0) =⇒ E =
ℏ2 l(l + 1)

2M R2
0

,

and the “radial” wave function may be represented (up to normalization) by

R(r) ∝ δ(r −R0) .

36. How looks like the electron configuration for Li, Na and K
atoms? Why? What do all these materials have in common (in
terms of physical properties)? How does this relate to the config-
uration of the electrons?

Li (Z=3): 1s2 2s1,

Na (Z=11): 1s2 2s2 2p6 3s1,

K (Z=19): 1s2 2s2 2p6 3s2 3p6 4s1.

By the Aufbau principle, electrons fill lowest-energy orbitals first, and
each of these atoms has a noble-gas core plus one electron in an ns orbital
(n = 2, 3, 4 respectively).

Common physical properties:

• Soft, silvery metals that are easily cut.

• Low melting and boiling points compared to most metals.

• Excellent electrical and thermal conductors.

• Very reactive, especially with water, forming M+ ions and releasing
hydrogen.

• All form +1 cations in compounds.

Each has a single valence electron in an s orbital outside a closed shell.
That lone ns1 electron is held relatively weakly (low ionization energy), so
it is easily lost to form M+. This one-electron-in-an-outer-shell structure
underlies their shared metallic character and high chemical reactivity.
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42.Can you prove the following expression (page 127): “In the

first order approximation of λ the coefficient a
(1)
n must satisfy a

(1)
n +

(a
(1)
n )∗ = 0

The perturbed wavefunction expanded to first order in λ:

Ψn = Ψ(0)
n + λΨ(1)

n +O(λ2), Ψ(1)
n =

∑
m

a(1)m Ψ(0)
m .

Normalization demands ∫
Ψ∗

n(r)Ψn(r) dτ = 1.

Substitute the expansion and keep only terms up to order λ:∫
Ψ∗

nΨn dτ =

∫ [
Ψ(0)∗

n + λΨ(1)∗
n

][
Ψ(0)

n + λΨ(1)
n

]
dτ +O(λ2)

=

∫ ∣∣Ψ(0)
n

∣∣2 dτ + λ

∫ [
Ψ(0)∗

n Ψ(1)
n +Ψ(1)∗

n Ψ(0)
n

]
dτ +O(λ2).

We know {Ψ(0)
m } is orthonormal, so∫
Ψ(0)∗

n Ψ(0)
n dτ = 1,

∫
Ψ(0)∗

n Ψ(0)
m dτ = 0 (m ̸= n).

Next, substitute Ψ
(1)
n =

∑
m a

(1)
m Ψ

(0)
m into the first-order integral:∫

Ψ(0)∗
n Ψ(1)

n dτ =
∑
m

a(1)m

∫
Ψ(0)∗

n Ψ(0)
m dτ = a(1)n ,∫

Ψ(1)∗
n Ψ(0)

n dτ =
∑
m

(a(1)m )∗
∫

Ψ(0)∗
m Ψ(0)

n dτ = (a(1)n )∗.

Therefore the normalization condition becomes

1 = 1 + λ
[
a(1)n + (a(1)n )∗

]
+O(λ2).

For this to hold at order λ, the coefficient must vanish:

a(1)n +
(
a(1)n

)∗
= 0.

Thus a
(1)
n is purely imaginary, as required.
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