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1 Question 8

Ĥ = − ℏ2

2m
∇2

Recall that the square of the angular momentum operator is:

L̂2 = L̂2
x + L̂2

y + L̂2
z

and that L̂i (for i = x, y, z) involve first-order derivatives.
∇2 in spherical coordinates:

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
− L̂2

ℏ2r2

Thus, the Hamiltonian becomes:

Ĥ = − ℏ2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
− L̂2

ℏ2r2

]

Ĥ contains L̂2 explicitly, and both Ĥ and L̂2 are functions of position and
momentum operators. Because L̂2 commutes with itself and its components
commute with the radial part of the Hamiltonian, which acts only on r, we
get:

[Ĥ, L̂2] = 0

The commutation relation [Ĥ, L̂2] = 0 implies that Ĥ and L̂2 share a
common set of eigenfunctions. Therefore, angular momentum squared is a
conserved quantity in this system and therefore the system has rotational
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symmetry. This conservation is a consequence of Noether’s theorem, which
states that every continuous symmetry of the action of a physical system
with conservative forces has a corresponding conservation law.

The Heisenberg Uncertainty Principle states that non-commuting observ-
ables cannot be simultaneously known with arbitrary precision:

∆A∆B ≥ 1

2
|⟨[Â, B̂]⟩|

Since [Ĥ, L̂2] = 0, energy and angular momentum squared can be simul-
taneously measured with arbitrary precision. Thus, there is no uncertainty
relation between them, and we can have quantum states that are eigenstates
of both Ĥ and L̂2.

2 Question 13

For a solid sphere rotating in space, the moment of inertia tensor is given by:

I =
2

5
MR2

Angular momentum L⃗ and angular velocity ω⃗ are related via:

L⃗ = Iω⃗ ⇒ ω⃗ =
L⃗

I
Therefore, the components of the angular frequency operators are:

ω̂x =
L̂x

I
=

5

2MR2
L̂x

ω̂y =
L̂y

I
=

5

2MR2
L̂y

ω̂z =
L̂z

I
=

5

2MR2
L̂z

3 Question 27

The total energy of the hydrogen atom in the Bohr model is:

En = −13.6 eV

n2
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For n = 3:

E3 = −13.6

32
= −13.6

9
≈ −1.51 eV

In the Bohr model, classical relations hold and the potential and kinetic
energies are U = 2E and K = −E respectively

Therefore:

K3 = −E3 = 1.51 eV

U3 = 2E3 = −3.02 eV

� Total energy E3 = −1.51 eV

� Kinetic energy K3 = 1.51 eV

� Potential energy V3 = −3.02 eV

4 Question 31

For a 4p orbital the principal quantum number is n = 4 and the azimuthal
quantum number is ℓ = 1 (p-orbital), the magnetic quantum numbers are
mℓ = −1, 0,+1, giving us 3 possible orbitals. Each orbital can accommodate
2 electrons, one with negative, and one with positive spin.

Maximum number of electrons in 4p = 3× 2 = 6

For a 2d orbital the principal quantum number is n = 2. For n = 2,
allowed values of ℓ are 0 (s) and 1 (p) and therefore a ℓ = 2 (d-orbital) is not
allowed for n = 2.

Therefore, the 2d orbital does not exist ⇒ 0 electrons

5 Question 42

|ψ(t)⟩ =
(
1 + λa1n(t)

)
|n⟩+ λ

∑
m̸=n

a1m(t) |m⟩+O(λ2)

The system starts at |n⟩. a1n(t) and a1m(t) are first-order coefficients.
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We normalize the wavefunction:

⟨ψ(t)|ψ(t)⟩ = 1.

We compute the inner product up to first order in λ:

⟨ψ(t)|ψ(t)⟩ =

(
⟨n|+ λa1∗n (t) ⟨n|+ λ

∑
k ̸=n

a1∗k (t) ⟨k|

)(
|n⟩+ λa1n(t) |n⟩+ λ

∑
m̸=n

a1m(t) |m⟩

)
+O(λ2)

= ⟨n|n⟩+ λa1n(t) ⟨n|n⟩+ λa1∗n (t) ⟨n|n⟩+ λ
∑
m̸=n

a1m(t) ⟨n|m⟩+ λ
∑
k ̸=n

a1∗k (t) ⟨k|n⟩+O(λ2).

Because of orthonormality ⟨n|n⟩ = 1, ⟨n|m⟩ = ⟨k|n⟩ = 0 for m, k ̸= n

Then we calculate:

⟨ψ(t)|ψ(t)⟩ = 1 + λ
(
a1n(t) + a1∗n (t)

)
+O(λ2).

To satisfy the normalization condition to order λ, we must require that
the coefficient of λ vanishes and therefore:

a1n(t) +
(
a1n(t)

)∗
= 0.
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