
1. Derive that relation between orbital and mag-
netic quantum numbers m=l ,. . . , 0 ,...+l .

Step 1: Definitions

We begin by defining the relevant quantum numbers:

• l: orbital quantum number - determines the magnitude of orbital angular
momentum.

• m: magnetic quantum number - determines the z-component of angular
momentum.

Step 2: Orbital Angular Momentum Magnitude

The magnitude of orbital angular momentum is given by:

|ωL| = ⊋
√

l(l + 1)

Step 3: Angular Momentum z-Component

Only the z-component of angular momentum is directly observable:

Lz = m⊋

where m must be an integer.
Step 4: Physical Constraint on m
From quantum mechanics, the z-component cannot exceed the total angular

momentum:
|Lz| → |ωL| ↑ |m⊋| → ⊋

√
l(l + 1)

↑ |m| →
√

l(l + 1)

However, this only limits m’s range in magnitude, not the actual discrete
values it can take.

Step 5: Quantum Mechanical Restriction

From solving the Schrödinger equation in spherical coordinates, we know
that m must be an integer satisfying:

m = ↓l,↓(l ↓ 1), . . . , 0, . . . ,+(l ↓ 1),+l

Hence, for a given l, the magnetic quantum number m takes (2l+1) possible
integer values.

m = -l, -(l-1), . . . , 0, . . . , +(l-1), +l
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16: Angle Between Angular Momentum Vector and z-axis

Problem: How in quantum mechanics can the angle between the angular momentum vector ωL and the z-axis

be calculated? Calculate this angle for magnetic quantum numbers m = →2 and +1 for 3d orbitals.

Step 1: General Formula
In quantum mechanics, we have:

|ωL| = ⊋
√
l(l + 1) and Lz = m⊋

The angle ε between ωL and the z-axis is given by the projection:

cos ε =
Lz

|ωL|
=

m⊋
⊋
√
l(l + 1)

=
m√

l(l + 1)

Step 2: For 3d orbitals

l = 2 ↑
√

l(l + 1) =

↓
2 · 3 =

↓
6

Case 1: m = →2

cos ε =
→2↓
6
= →

↓
6

3

ε = cos
→1

(
→
↓
6

3

)
↔ cos

→1
(→0.8165) ↔ 144.7↑

Case 2: m = +1

cos ε =
1↓
6
=

↓
6

6

ε = cos
→1

(↓
6

6

)
↔ cos

→1
(0.4082) ↔ 66.4↑

For m = →2, ε ↔ 144.7↑

For m = +1, ε ↔ 66.4↑
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21: Radial wave function for an uncharged electron

Question: What does the equation for the radial wave function look like if we assume that the electron is

an uncharged particle?

Step 1: Start from the radial Schrödinger equation
In spherical coordinates, the time-independent Schrödinger equation for the radial wave function is:

d2R

dr2
+

2

r

dR

dr
+

[
2µ

⊋2 (E → V (r))→ l(l + 1)

r2

]
R = 0

For the hydrogen atom, the potential is Coulombic:

V (r) = → e2

4ωε0r

Step 2: Assume the electron is uncharged
If the electron has no electric charge, it does not interact with the proton. Hence:

V (r) = 0

Substituting this into the radial equation gives:

d2R

dr2
+

2

r

dR

dr
+

(
2µE

⊋2 → l(l + 1)

r2

)
R = 0

d2R

dr2
+

2

r

dR

dr
→
(
l(l + 1)

r2
+

2µ|E|
⊋2

)
R = 0

Step 3: Physical Interpretation

• The equation now describes a free particle in spherical coordinates.

• The only remaining potential term is the centrifugal barrier l(l+1)
r2 , due to angular momentum.

• Without the Coulomb potential, the particle is no longer bound to the nucleus.

• The solutions are not hydrogen-like orbitals, but resemble spherical Bessel functions.

• The energy spectrum is continuous, and all energies are allowed (E > 0). There are no quantized

(bound state) energy levels.

Conclusion: Assuming the electron is uncharged removes the Coulomb interaction, resulting in a free-

particle-like radial equation. The wavefunction no longer describes discrete bound states, and the system

supports only scattering solutions.
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30: maximum number of electrons in 1p and 3f orbitals for hydro-
gen atom

Question: Calculate the possible maximum number of electrons in 1p and 3f orbitals for the hydrogen

atom.

Important Clarification: By quantum number rules, for an orbital to physically exist, the orbital

quantum number l must satisfy:

l = 0, 1, . . . , n→ 1

Hence:

• 1p: n = 1, l = 1 ↑ l ↓< n Does not exist physically

• 3f: n = 3, l = 3 ↑ l ↓< n Does not exist physically

However, for the sake of calculation, we can still compute the hypothetical maximum number of electrons
assuming these orbitals did exist:

—

Calculation Formula:
Each orbital is defined by quantum numbers (n, l,ml,ms). - For given l, there are 2l + 1 values of ml -

Each ml orbital can hold 2 electrons (with ms = ± 1
2 )

Max electrons = (2l + 1)↔ 2

Hypothetical Calculations:

• 1p: l = 1 ↑ ml = →1, 0,+1 ↑ 3 orbitals Each orbital holds 2 electrons

Max electrons = 3↔ 2 = 6

• 3f: l = 3 ↑ ml = →3,→2,→1, 0,+1,+2,+3 ↑ 7 orbitals Each orbital holds 2 electrons

Max electrons = 7↔ 2 = 14

Summary Table:

Orbital Physically Allowed? Hypothetical Max Electrons Reason
1p No 6 l = 1 ↓< n = 1

3f No 14 l = 3 ↓< n = 3

If 1p and 3f orbitals existed, they would accommodate up to: 6 electrons in 1p, 14 electrons in 3f
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45: why only terms n+1 and n→1 contribute in second-order energy
correction

We consider a quantum harmonic oscillator under a constant force F , leading to a perturbation of the form:

H
→ = →Fx

The second-order correction to the energy of the n-th state is given by:

E
(2)
n =

∑

k ↑=n

|↑k|H →|n↓|2

E
(0)
n → E

(0)
k

Substituting the perturbation H
→ = →Fx:

E
(2)
n =

∑

k ↑=n

F
2|↑k|x|n↓|2

E
(0)
n → E

(0)
k

Step 1: Matrix Elements of x in Harmonic Oscillator Basis

The position operator in terms of ladder operators is:

x =

√
⊋

2Mω
(a+ a

†)

Hence, only transitions k = n± 1 give non-zero matrix elements:

↑n+ 1|x|n↓ =
√

⊋
2Mω

↔
n+ 1 ↑n→ 1|x|n↓ =

√
⊋

2Mω

↔
n

Therefore:

|↑n+ 1|x|n↓|2 =
⊋

2Mω
(n+ 1) |↑n→ 1|x|n↓|2 =

⊋
2Mω

n

Step 2: Energy Denominators

For the harmonic oscillator:

E
(0)
n = ⊋ω

(
n+

1

2

)
↗

{
E

(0)
n → E

(0)
n+1 = →⊋ω

E
(0)
n → E

(0)
n↓1 = +⊋ω

Step 3: Plug into the Energy Correction Formula

E
(2)
n = F

2

[
⊋

2Mω (n+ 1)

→⊋ω +
⊋

2Mωn

⊋ω

]

= F
2 · ⊋

2Mω

(
→1

⊋ω · (n+ 1) +
1

⊋ω · n
)

= F
2 · ⊋

2Mω
·
(
n→ (n+ 1)

⊋ω

)

= F
2 · ⊋

2Mω
·
(
→1

⊋ω

)
= → F

2

2Mω2

E
(2)
n = → F

2

2Mω2
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Conclusion

Only the n+1 and n→1 terms contribute to the second-order energy correction because the position operator
x only connects adjacent harmonic oscillator eigenstates:

↑k|x|n↓ = 0 unless k = n± 1

2


