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1. Derive that relation between orbital and mag-
netic quantum numbers m=1,..., 0 ,...41.

Step 1: Definitions 10
We begin by defining the relevant quantum numbers:

e [: orbital quantum number - determines the magnitude of orbital angular
momentum.

e m: magnetic quantum number - determines the z-component of angular
momentum.

Step 2: Orbital Angular Momentum Magnitude
The magnitude of orbital angular momentum is given by:

|L| = h/1(1 + 1)

Step 3: Angular Momentum z-Component
Only the z-component of angular momentum is directly observable:

L, =mh

Mmm, tapne selgitus loengus anti

where m must be an integer.

Step 4: Physical Constraint on m
From quantum mechanics, the z-component cannot exceed the total angular

mpmentum: .
L.| <|L| = |mh| < k1 + 1)

= |m| < V(I +1)

However, this only limits m’s range in magnitude, not the actual discrete
vdlues it can take.

Step 5: Quantum Mechanical Restriction

From solving the Schrodinger equation in spherical coordinates, we know
that m must be an integer satisfying:

m=—l,—(—1),...,0,....,+(—=1),+l

Hence, for a given [, the magnetic quantum number m takes (20 + 1) possible
integer values.

m=-l-(-1),...,0, ..., +(1-1), +1
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16: Angle Between Angular Momentum Vector and z-axis

Problem: How in quantum mechanics can the angle between the angular momentum vector L and the z-axis
be calculated? Calculate this angle for magnetic quantum numbers m = —2 and +1 for 3d orbitals.

Step 1: General Formula 20
In quantum mechanics, we have:

Ll =hy/1(l+1) and  L.=mh
The angle 6 between L and the z-axis is given by the projection:

L, mh

N Y

cosf =

Step 2: For 3d orbitals
I1=2=I(l+1)=v2-3=6

Case 1: m = -2

cosf) = — = —

—9 @
/6 3

0 = cos™! (—?) ~ cos ™! (—0.8165) ~ 144.7°

Case 2: m = +1

1 V6

cost)l = — = —

Jo 6

6 = cos™! (?) ~ cos ™ 1(0.4082) ~ 66.4°

For m = -2, 0~ 144.7°
For m = +1, 60 ~664°



misha
Textbox
20


21: Radial wave function for an uncharged electron

Question: What does the equation for the radial wave function look like if we assume that the electron is
an uncharged particle?

Step 1: Start from the radial Schrédinger equation
In spherical coordinates, the time-independent Schrodinger equation for the radial wave fynction is:

20
2R 2dR [2u I(141)
@ T e E V) s T | =0

For the hydrogen atom, the potential is Coulombic:

Vir)=-
(r) dmegr

Step 2: Assume the electron is uncharged
If the electron has no electric charge, it does not interact with the proton. Hence:

V(ir)=0
Substituting this into the radial equation gives:

d*R  2dR 2uE (1 +1)
— - — R=0
dr?2  rdr + ( h? r2

2 2 1 2ulE
’R dR (l(l+)+u |)R:O

dr2 " rdr 72 h2

Step 3: Physical Interpretation

e The equation now describes a free particle in spherical coordinates.

1(1+1)
7.2

e The only remaining potential term is the centrifugal barrier , due to angular momentum.
e Without the Coulomb potential, the particle is no longer bound to the nucleus.

The solutions are not hydrogen-like orbitals, but resemble spherical Bessel functions.

The energy spectrum is continuous, and all energies are allowed (E > 0). There are no quantized
(bound state) energy levels.

Conclusion: Assuming the electron is uncharged removes the Coulomb interaction, resulting in a free-
particle-like radial equation. The wavefunction no longer describes discrete bound states, and the system
supports only scattering solutions.
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30: maximum number of electrons in 1p and 3f orbitals for hydro-
gen atom

Question: Calculate the possible maximum number of electrons in 1p and 3f orbitals for the hydrogen
atom.

Important Clarification: By quantum number rules, for an orbital to physically exist, the orbital
quantum number [ must satisfy:
Hence:

e Ip: n=1,l=1=1+«n Does not exist physically

e 3f: n=3,1=3=1+«n Does not exist physically

However, for the sake of calculation, we can still compute the hypothetical maximum number of electrons
assuming these orbitals did exist:

Calculation Formula:
Each orbital is defined by quantum numbers (n,l, m;, ms). - For given [, there are 2] 4+ 1 values of m; -
Each my orbital can hold 2 electrons (with m, = +1)

Max electrons = (20 + 1) x 2

Hypothetical Calculations:
e Ip: [=1=m; =—-1,0,41 = 3 orbitals Each orbital holds 2 electrons

Max electrons =3 x 2 = @

e 3f: | =3=>m; =-3,-2,—-1,0,+1,+2,+3 = 7 orbitals Each orbital holds 2 electrons

Max electrons =7 x 2 =

Summary Table:

Orbital | Physically Allowed? | Hypothetical Max Electrons Reason
1p No 6 l=14£n=1
3f No 14 [=34£n=3

If 1p and 3f orbitals existed, they would accommodate up to: 6 electrons in 1p, 14 electrong in 3f
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45: why only terms n+1 and n—1 contribute in second-order energy
correction

We consider a quantum harmonic oscillator under a constant force F', leading to a perturbation of the form:

H =—-Fz

The second-order correction to the energy of the n-th state is given by:

g _ 5 LT
0) 0

Substituting the perturbation H' = —Fz:

F2|(kfen)

o[ i L L0
n 0 0
k#n ET(L )~ El(c )

Step 1: Matrix Elements of z in Harmonic Oscillator Basis

The position operator in terms of ladder operators is:

h
_ ./ t
T 2wa(a—l—a)

Hence, only transitions £ = n + 1 give non-zero matrix elements:

h h
(n+ 1|zn) = m\/n—i-l (n—l\x|n>:\/m\/ﬁ

Therefore:

Aga miks ignoreeritud liikkmed <n+2|x|n>, <n+3|x|n>j.n.e. 77?7
B

U

[(n + L]z[n)[* = (n+1)  [(n—1zn)* =

2Mw 2Mwn

Step 2: Energy Denominators

For the harmonic oscillator:

1 EY —EY, = —hw
EO® — Ko (n + > n+1
" 2 EY — B\ = +hw

Step 3: Plug into the Energy Correction Formula

h h
E(Q) :F2 Mw(n+ 1) + 2Mwn]

10
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Conclusion

Only the n+1 and n—1 terms contribute to the second-order energy correction because the position operator
x only connects adjacent harmonic oscillator eigenstates:

(klxln) =0 unless k=n=+1



