*** Two arrays must be declared:

 $!^{***}$ y (4) - an array containing the coordinates x = y (1), y=y(2) and projections of velocity vector $!^{***}$ Vx = y (3), Vy=y(4).

!*** The working array work (27) with a length to be calculated using the equation

 $!^{***} 3 + 6^{*}$ neqn (neqn- is number of equations)

 $!^{***}$ m_maa variable must also be declared as REAL. Here we take into $% \mathcal{M}^{*}(\mathcal{M})$ account the Fortran

 $!^{***}$ feature. If variables are not declared at the beginning of the program by the REAL,

 $!^{***}$ INTEGER, etc. operators, the Fortran compiler can declare and create them by using the

 $!^{***}$ default rule: if the first character in the variable name is i, j, k, l, m, n then the variable must be

!*** INTEGER if it is not so then the variable must be REAL.

real y(2), work(15), m, k

!*** Declaration of additional integer work array iwork(5) with fixed length 5 (defined in subroutine rkf45) integer iwork(5)

 $!^{***}$ Description the global variables which must be used in subroutine "func" to calculate

 $!^{***}$ derivatives of coordinate x,y and velocities projections Vx,Vy with respect to time

common omega2,beta

 $!^{***}$ external operator should be used to describe the variable "func" as a name of external subroutine $external \, func$

!*** external operator should be used to describe the variable "func" as a name of external subroutine

open(10,file="harm.dat")

 $!^{***}$ elastic constant of the spring in N/m

k=5.

 $!^{\ast\ast\ast}$ mass of harmonic oscillator in kg

m=0.1

 $!^{***}$ frequency squared calculation

omega2=k/m

!*** coefficients of resistance force

alpha=0.1

beta=alpha/(2.*m)

*** Relative and absolute errors for calculation the coordinate and velocity this is a input parameter for $!^{***}$ subroutine rkf45

relerr=1.e-8

abserr=1.e-8

!*** Number of differential equations

neqn=2

 $!^{\ast\ast\ast}$ Initial value of time

t=0.

 $!^{***}$ iflag=1 is need to start the calculation, it means that we are starting a new simulation

iflag=1

!*** Initial conditions

 $!^{***}$ y(1)=0.1 m - x coordinate of point mass

 $!^{***}$ y(2)=0. m/s - velocity (x-projection) of point mass

y(1)=0.1

y(2)=0.

!*** Total number of time steps

nt=10000

 $!^{***}$ Time step in seconds

dt=0.001

 $!^{***}$ An additional parameter to save the value of the calculated work of the resistance force

!*** The general equation for calculating the work of any force looks like this: $A = \int_{-\infty}^{\infty} \vec{F} \cdot \vec{dr}$, here

!*** \vec{F} -force vector and \vec{dr} displacement vector . For infinitely small displacement \vec{dr} we get equation !*** $dA = \vec{F} \cdot \vec{dr} = F_x \cdot dx + F_y \cdot dy + F_z \cdot dz$ and for one dimensional motion

!*** $dA = \vec{F} \cdot \vec{dr} = F_x \cdot dx$ or $A = F \cdot \Delta x = F \cdot (x_2 - x_1)$, here x_2 and x_1 are the end and start coordinates of the point !*** mass

too=0.

 $!^{***}$ An additional parameter to save the value of the calculated work of the resistance force

x=y(1)

 $\ast\ast\ast\ast$ Cycle operator to perform the integration of the system of differential equations and

 $!^{***}$ calculation of coordinates and velocities at different time moments with timestep dt=0.001 second.

 $!^{***}$ The total time of simulation can be calculated as a product of variables $\, nt \, and \, dt \, ,$

 $!^{***}$ in our case it is equal to $nt^*dt=0.001^*10000=10$ seconds.

do i=1,nt

 $!^{***}$ Calculation of new value of time (should be done by hand)

tout=t+dt

*** Calculation of coordinate y(1) and velocitie y(2) at the next time moment tout=t+dt

call rkf45(func,neqn,y,t,tout,relerr,abserr,iflag,work,iwork)

 $!^{***}$ Just in case the control of the iflag value. If iflag=2 the calculation was success and $!^{***}$ we can to continue

if (iflag.ne.2) then

iflag=2

endif

 $!^{***}$ calculation of displacement

dx=y(1)-x

!*** Calculation of the work of the resistance force

too=too-alpha*y(2)*dx

```
x=y(1)
```

 $!^{***}$ calculating of kinetic, potential and total energies

```
ekin=0.5*m*y(2)**2
```

epot=0.5*k*y(1)**2

```
etot = ekin + epot
```

!*** calculating of corrected total energy $E_{corr} = E_{tot} - A_{resist}$, we take into account the energy lost due to !*** the force of resistance

ecorr=etot-too

!***Saving data in the following format
!*** time x Vx Ekin Epot Etot Ecorr
write(10,*) tout,y,ekin,epot,etot,ecorr

enddo

 $!^{***} \operatorname{stop} \operatorname{program}$

stop

 $!^{\ast\ast\ast}$ end of source code

end

 $!^{***}$ The most important part of the program. Here we must implement the differential equation.

 $!^{***}$ Now we need to calculate the derivatives with respect to the coordinate and velocity

 $!^{***}$ with respect to time.

- $!^{***}$ Now the subroutine "func" must be created. Number of input parameters is fixed.
- $!^{***}$ t-time, y(4)-array consist the coordinate y(1),y(2) and velocity projections y(3),y(4) of sphere,

 $!^{***}$ yp(4)-array with derivatives so that:

 $!^{***} \operatorname{dy}(1) = \operatorname{dy}(1)/\operatorname{dt} = \operatorname{velocity} = \operatorname{y}(2)$ and

 $!^{***} dy(2) = dy(2)/dt = acceleration = -omega2^*y(1) - 2.*beta^*y(2)$

!*** (theoretical background you can find in precis of lecture)

subroutine func(t,y,dy)

 $!^{***}$ Description the global variables which must be used in subroutine "func" to calculate

 $!^{***}$ derivatives of coordinate x and velocities projections $\,\,{\rm Vx}$ with respect to time

common omega2,beta

!*** Declaration of arrays

real y(2), dy(2)

*** first derivative for coordinate $\mathbf x$ with respect to time

dy(1)=y(2)

 $!^{***} Second derivative, calculation of x-projection of acceleration with the second Newton's low$

$dy(2) = -omega2^*y(1) - 2.*beta^*y(2)$

 $!^{***}$ Back to call operator in the main program

return

 $!^{***}$ End of source code for subroutine "func"

end