#!/usr/bin/python3 import math as m import cmath as cm import numpy as np #*** 1 *** #a=30. #b=3 #print ("1 ",a,b,a+b) #*** 2 *** #a,b=10.,45. #print ("2 ",a,b,a+b,np.pi,np.sin(b*np.pi/180.),np.deg2rad(b)) #*** 3 *** #a=float(input('enter a=')) #b=float(input('enter b=')) #print(a,"+",b,"=",a+b) #*** 4 *** #a,b=np.loadtxt("data1.dat") #print (a+b) #*** 5 *** #a=[1,2,3,4,5,6,7,8,9,10] #b=np.array([[1,2],[3,4]]) #c=np.zeros((2,2)) #d=np.ones((3,3)) #f=np.empty((2,2)) #e=np.random.rand(2,2) #print (np.ndim(b),"\n",b,"\n",np.transpose(b)) #*** 6 *** #print ("trans \n",e) #print (np.size(e),np.shape(e),np.ndim(e)) #ep=np.linalg.inv(e) #print (e) #print (ep) #print (np.matmul(e,ep)) #print (np.linalg.det(ep)) #*** 7 *** #a=np.loadtxt("data.dat") #def sum(a): # sum=0 # n=len(a) # for i in a: # sum=sum+i # mean=sum/n # return sum,mean,max(a),min(a),n #print ("sum= ",sum(a)[0],"\n", \ #"mean=",sum(a)[1],"\n", \ #"max=",sum(a)[2], \ #"\n","mmin=",sum(a)[3], \ #"\n","arv=",sum(a)[4]) #*** 8.1 *** #a,b,c=np.loadtxt("sv.dat") #print (a,b,c) #def root(a,b,c): # dt2=b**2-4.*a*c # if dt2 > 0.: # x1=(-b+np.sqrt(dt2))/(2.*a) # x2=(-b-np.sqrt(dt2))/(2.*a) # return "kaks ruudu",x1,x2 # if dt2 == 0.: # x1=x2=-b/(2.*a) # return "uks ruut",x1,x2 # if dt2 <0.: # x1=-b/(2.*a) # x2=np.sqrt(-dt2)/(2.*a) # return "complex",x1,x2 #print (root(a,b,c)) #*** 8.2 *** #a,b,c=np.loadtxt("sv.dat") #print (a,b,c) #def root(a,b,c): # dt=cm.sqrt(b**2-4.*a*c) # x1=(-b+dt)/(2.*a) # x2=(-b-dt)/(2.*a) # return x1,x2 #print (root(a,b,c)) #*** 9 *** #def fctr(n): # fac=1 # if n==0 or n==1: # return 1 # if n<1: # return "ERROR: argument is negative" # for i in np.arange(1,n+1,1): # fac=fac*i # return fac #n=int(input("enter n=")) #print (n,"!=",fctr(n)) #*** 10 *** #a=[1,2,3,4,5,-10,100] #def maxmin(a): # n=len(a) # maxa=-1.e38 # mina=+1.e38 # for i in np.arange(0,n,1): # if maxa < a[i]: # maxa=a[i] # if mina >a[i]: # mina=a[i] # return maxa,mina #print (maxmin(a)[0],maxmin(a)[1]) #*** 11 *** #a=[1,2,0] #b=[0,0,2] #def angle(a,b): # ab=np.dot(a,b) # am=np.linalg.norm(a) # bm=np.linalg.norm(b) # at=ab/(am*bm) # alpha=np.arccos(at)*180./np.pi # return alpha #print (angle(a,b)) #*** 12 *** #from scipy.integrate import quad #def func(x): # return x**2 #a = 0 #b = 1 #I = quad(func,a,b) #print (I) #*** 13 *** a=[1,2,3,4,5] for i in a: print (m.factorial(i)) print(np.max(a),np.min(a))