*** Two arrays must be declared:

 $!^{***} y (4)$ - an array containing the coordinates x = y (1), y=y(2) and projections of velocity vector $!^{***} Vx = y (3)$, Vy=y(4).

!*** The working array work (27) with a length to be calculated using the equation

 $!^{***} 3 + 6^{*}$ neqn (neqn- is number of equations)

 $!^{***}$ m_maa variable must also be declared as REAL. Here we take into $% \mathcal{M}^{*}(\mathcal{M})$ account the Fortran

!*** feature. If variables are not declared at the beginning of the program by the REAL,

!*** INTEGER, etc. operators, the Fortran compiler can declare and create them by using the

 $!^{***}$ default rule: if the first character in the variable name is i, j, k, l, m, n then the variable must be $!^{***}$ INTEGER if it is not so then the variable must be REAL.

real y(4), work(27), mu_atm, m_keha, m_maa

!*** Declaration of additional integer work array iwork(5) with fixed length 5 (defined in subroutine rkf45) integer iwork(5)

 $!^{***}$ Description the global variables which must be used in subroutine "func" to calculate

 $!^{***}$ derivatives of coordinate x,y and velocities projections Vx,Vy with respect to time

$common~gm,r_maa,ro_atm_0,param1,param2$

 $!^{\ast\ast\ast}$ external operator should be used to describe the variable "func" as a name of external subroutine $external \, func$

 $!^{***}$ Now we need to open the file to save the calculated results

open(20,file="fall.dat")

 $!^{***}$ On the next lines some important variables should be created and we must assign

 $!^{***}$ values for them

!*** Value of pi

pi=3.1415926536

 $!^{***}$ Aerodynamic parameter for landing module (taken from the internet)

$c_{keha=0.47}$

 $!^{***}$ Radius of landing module (object of investigation) in meters

$r_keha=2.$

 $!^{***}$ Mass of the landing module in kilograms

m_keha=2800.

 $!^{***}$ Description the global variables which must be used in subroutine "func" to calculate

!*** derivatives of coordinate x,y and velocities projections Vx,Vy with respect to time!*** Pressure of atmolanding module on the sea level in Pascale

p_atm=101000.

!*** Mass of one kilomole of air (average value) in kg/kmol

$mu_atm=29.$

!*** Universal gas constant in $\frac{J}{K \cdot kmol}$

r_gaas=8314.

 $!^{***}$ Temperature of atmosphere on the sea level in Kelvin

t_atm=300.

!*** Gravity constant

G = 6.67408e-11

 $!^{***}$ Mass of he Earth in kilograms

m maa=5.9722e+24!*** Additional work parameter (the number 1.e-9 arose due to conversion of meters into kilometers) gm=G*m maa*1.e-9 !*** Radius of the Earth in kilometers r maa=6378. !*** landing module square of cross section s keha=pi*r keha**2 !*** Calculation of the density of air on a sea level ro atm 0=p atm*mu atm/(r gaas*t atm) !*** Two additional work variables used for convenience only param2=s keha*c keha*500./m keha param1=mu atm*9814./(r gaas*t atm) !*** Number of differential equations neqn=4!*** Time step in seconds dt=1.!*** Total number of time steps nt = 2000!*** Relative and absolute errors for calculation the coordinate and velocity this is a input parameter for !*** subroutine rkf45 abserr = 1.e-8relerr=1.e-8 !*** Intitial value of velocity (modulus) v0=7.7884079 !*** Entering the angle between the initial velocity and the "y" axis !*** (determination of the direction of the satellite's velocity vector towards the Earth) print '("Enter alpha="\$)' read *,alpha !*** Initial conditions $!^{***}$ y(1)=6578 km - x coordinate of landing module at start time moment $!^{***}$ y(2)=0 km y coordinate of landing module at start time moment velocity (x-projection) of landing module at start time moment !*** v(3)=0. km/s !*** y(4)=9.78337 km/s- velocity (y-projection) of landing module at start time moment y(1)=6578.0 v(2)=0.y(3) = -v0*sin(pi*alpha/180.) $v(4)=v0*\cos(pi*alpha/180.)$!*** Initial value of time t=0!*** iflag=1 is need to start the calculation, it means that we are starting a new simulation iflag=1!*** Cycle operator to perform the integration of the system of differential equations and

!*** calculation of coordinates and velocities at different time moments with timestep dt=1 second.

!*** The total time of simulation can be calculated as a product of variables nt and dt, $!^{***}$ in our case it is equal to $nt^*dt=1^*2000=2000$ seconds. do i=1,nt !*** Caslculation of new value of time (should be done by hand) tout=t+dt!*** Calculation of coordinates y(1),y(2) and velocities y(3),y(4) at the next time moment tout=t+dt call rkf45(func,neqn,y,t,tout,relerr,abserr,iflag,work,iwork) !*** Just in case the control of the iflag value. If iflag=2 the calculation was success and $!^{***}$ we can to continue if(iflag.ne.2) then iflag=2endif !*** Calculation of the absolute value of velocity ($|v| = \sqrt{v_{..}^2 + v_{..}^2}$) $v = sqrt(y(3)^{**}2 + y(4)^{**}2)$!*** Calculation of the distance between satellite and center of the Earth ($|r| = \sqrt{x^2 + y^2}$) $r = sqrt(y(1)^{**}2 + y(2)^{**}2)$!*** Height of trajectory h=r-r maa

!*** Density of atmosphere on height h

ro atm=ro atm 0*exp(-param1*h)

 $!^{***}$ Calculation of the projections and modulus of acceleration vector

 $ax = -y(1)*gm/r**3-param2*ro_atm*v*y(3)$

```
ay=-y(2)*gm/r**3-param2*ro_atm*v*y(4)
```

 $a = sqrt(ax^{**}2 + ay^{**}2)$

 $!^{***}$ Parachute modeling: if the height of the trajectory becomes less than 5 km,

 $!^{***}$ we increase the radius of the landing module by 5 times

if (h.le.5.)then

 $r_{keha=20.}$

```
s_keha=pi*r_keha**2
```

```
param2=c_keha*s_keha*500./m_keha
```

endif

!*** Checking the landing on the Earth

if(h.le.0.)then

stop

 \mathbf{endif}

!***Saving data in the following format

!*** time x y Vx Vy height velocity(km/h) acceleration(m/s²)

write(20, '(10f15.5)') tout,y,h,v*3600,a*1000

!***

enddo

!***

stop !***

. end !*** The most important part of the program. Here we must implement the differential equation.

!*** Now we need to calculate the derivatives with respect to the coordinate and velocity

!*** with respect to time.

 $!^{***}$ Now the subroutine "func" must be created. Number of input parameters is fixed.

!*** t-time, y(4)-array consist the coordinate y(1), y(2) and velocity projections y(3), y(4) of sphere, !*** yp(4)-array with derivatives so that:

 $!^{***} dy(1)=dy(1)/dt=velocity=y(3) and$

 $!^{***} dy(2) = dy(2)/dt = velocity = y(4) and$

 $!^{***} r = sqrt(y(1)^{**}2 + y(2)^{**}2)$

```
!^{***} dy(3) = dy(2)/dt = acceleration x-projection = -y(1)^*gm/r^{**3}-param2^*ro_atm^*vv^*y(3)
```

```
!^{***} dy(4) = dy(2)/dt = acceleration y-projection = -y(2)^*gm/r^{**3}-param2^*ro_atm^*vv^*y(4)
```

 $!^{***}$ (theoretical background you can find in lecture)

subroutine func(t,y,dy)

 $!^{***}$ Declaration of arrays

real y(4), dy(4)

!*** Description the global variables which must be used in subroutine "func" to calculate !*** derivatives of coordinate x,y and velocities projections Vx,Vy with respect to time

$common~gm,r_maa,ro_atm_0,param1,param2$

!***

```
r=sqrt(y(1)^{**}2+y(2)^{**}2)
```

```
!***
```

 $vv = sqrt(y(3)^{**2}+y(4)^{**2})$

h=r-r maa

ro atm=ro atm $0^{\text{exp}(-\text{param1*h})}$

 $!^{***}$ first derivative for coordinate **x** with respect to time

dy(1)=y(3)

 $!^{***}$ first derivative for coordinate **y** with respect to time

dy(2)=y(4)

 $!^{***} Second derivative, calculation of x-projection of acceleration with the second Newton's low dy(3)=-y(1)*gm/r^{**}3-param2*ro_atm*vv*y(3)$

 $!^{***} Second derivative, calculation of y-projection of acceleration with the second Newton's low dy(4)=-y(2)*gm/r^{**}3-param2*ro_atm*vv*y(4)$

 $!^{***}$ Back to call operator in the main program

\mathbf{return}

 $!^{***}$ End of source code for subroutine "func"

end